Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Future Virol ; 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1581479

ABSTRACT

Aim: This study evaluated the real-world performance of six test systems for detection of SARS-CoV-2 in 138 pediatric and 110 adult maternal patients. Materials & methods: Nasopharyngeal swabs were tested directly using the Aptima™ SARS-CoV-2 (Aptima) and Simplexa™ COVID-19 Direct (Simplexa), and with Altona RealStar® RT-PCR and CDC RT-PCR with nucleic acid extracted on the Roche® MagNA Pure 96 (Altona-MP96) or bioMérieux EMAG® (Altona-EMAG). Results/Conclusion: Overall percent-positive and percent-negative agreements among the six test systems were, respectively: Aptima: 94.8 and 100%; Altona-MP96: 96.5 and 99.3%; CDC-MP96: 100 and 99.3%; Altona-EMAG: 86.1 and 100%; CDC-EMAG: 98.2 and 100%; Simplexa: 87 and 99.2%. The six test systems showed agreement ranging from 92.7 (κ = 0.85) to 98.8% (κ = 0.98).

2.
J Pediatric Infect Dis Soc ; 10(8): 872-879, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1281865

ABSTRACT

BACKGROUND: Nasopharyngeal (NP) specimen testing by reverse transcriptase polymerase chain reaction (RT-PCR) is the standard of care for detecting SARS-CoV-2. Data comparing the sensitivity and specificity of the NP specimen to the less invasive, mid-turbinate (MT) nasal specimen in children are limited. METHODS: Paired clinical NP and research MT specimens were collected from children <18 years with respiratory symptoms and tested by molecular assays to detect SARS-CoV-2 RNA. Sensitivity, specificity, and agreement (Cohen's kappa [κ]) were calculated for research MT specimens compared to the clinical NP specimens. RESULTS: Out of 907 children, 569 (62.7%) had parental consent and child assent when appropriate to participate and provided paired MT and NP specimens a median of 4 days after symptom onset (range 1-14 days). 16.5% (n = 94) of MT specimens were positive for SARS-CoV-2 compared with 20.0% (n = 114) of NP specimens. The sensitivity of research MT compared to clinical NP specimens was 82.5% (95% CI: 74.2%, 88.9%), specificity was 100.0% (95% CI: 99.2%, 100.0%), and overall agreement was 96.1% (κ = 0.87). The sensitivity of MT specimens decreased with time from 100% (95% CI: 59.0%, 100.0%) on day 1 of illness to 82.1% (95% CI: 73.8%, 88.7%) within 14 days of illness onset; sensitivity was generally >90% when specimens were collected within the first week of illness. CONCLUSION: MT specimens, particularly those collected within the first week of illness, have moderately reduced sensitivity and equivalent specificity to less-tolerated NP specimens in pediatric outpatients. MT specimen use in children may represent a viable alternative to NP specimen collection.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Outpatients , RNA, Viral , Turbinates
3.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-1048659

ABSTRACT

The distribution of upper respiratory viral loads (VL) in asymptomatic children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. We assessed PCR cycle threshold (Ct) values and estimated VL in infected asymptomatic children diagnosed in nine pediatric hospital testing programs. Records for asymptomatic and symptomatic patients with positive clinical SARS-CoV-2 tests were reviewed. Ct values were (i) adjusted by centering each value around the institutional median Ct value from symptomatic children tested with that assay and (ii) converted to estimated VL (numbers of copies per milliliter) using internal or manufacturer data. Adjusted Ct values and estimated VL for asymptomatic versus symptomatic children (118 asymptomatic versus 197 symptomatic children aged 0 to 4 years, 79 asymptomatic versus 97 symptomatic children aged 5 to 9 years, 69 asymptomatic versus 75 symptomatic children aged 10 to 13 years, 73 asymptomatic versus 109 symptomatic children aged 14 to 17 years) were compared. The median adjusted Ct value for asymptomatic children was 10.3 cycles higher than for symptomatic children (P < 0.0001), and VL were 3 to 4 logs lower than for symptomatic children (P < 0.0001); differences were consistent (P < 0.0001) across all four age brackets. These differences were consistent across all institutions and by sex, ethnicity, and race. Asymptomatic children with diabetes (odds ratio [OR], 6.5; P = 0.01), a recent contact (OR, 2.3; P = 0.02), and testing for surveillance (OR, 2.7; P = 0.005) had higher estimated risks of having a Ct value in the lowest quartile than children without, while an immunocompromised status had no effect. Children with asymptomatic SARS-CoV-2 infection had lower levels of virus in their nasopharynx/oropharynx than symptomatic children, but the timing of infection relative to diagnosis likely impacted levels in asymptomatic children. Caution is recommended when choosing diagnostic tests for screening of asymptomatic children.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Viral Load , Adolescent , COVID-19 Testing/methods , Child , Child, Preschool , Female , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Male , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL